A Nested Variational Time Discretization for Parametric Anisotropic Willmore Flow
نویسندگان
چکیده
A variational time discretization of anisotropic Willmore flow combined with a spatial discretization via piecewise affine finite elements is presented. Here, both the energy and the metric underlying the gradient flow are anisotropic, which in particular ensures that Wulff shapes are invariant up to scaling under the gradient flow. In each time step of the gradient flow a nested optimization problem has to be solved. Thereby, an outer variational problem reflects the time discretization of the actual Willmore flow and involves an approximate anisotropic L2-distance between two consecutive time steps and a fully implicit approximation of the anisotropic Willmore energy. The anisotropic mean curvature needed to evaluate the energy integrand is replaced by the time discrete, approximate speed from an inner, fully implicit variational scheme for anisotropic mean curvature motion. To solve the nested optimization problem a Newton method for the associated Lagrangian is applied. Computational results for the evolution of curves underline the robustness of the new scheme, in particular with respect to large time steps.
منابع مشابه
A Nested Variational Time Discretization for Parametric Willmore Flow
A novel variational time discretization of isotropic and anisotropic Willmore flow combined with a spatial parametric finite element discretization is applied to the evolution of polygonal curves and triangulated surfaces. In the underlying natural approach for the discretization of gradient flows a nested optimization problem has to be solved at each time step. Thereby, an outer variational pr...
متن کاملA Nested Minimization Approach of Willmore Type Functionals Based on Phase Fields
A novel phase field model for Willmore flow is proposed based on a nested variational time discretization. Thereby, the mean curvature in the Willmore functional is replaced by an approximate speed of mean curvature motion, which is computed via a fully implicit variational model for time discrete mean curvature motion. The time discretization of Willmore flow is then performed in a nested fash...
متن کاملA Phase Field based PDE Constraint Optimization Approach to Time Discrete Willmore Flow
A novel phase field model for Willmore flow is proposed based on a nested variational time discretization. Thereby, the mean curvature in the Willmore functional is replaced by an approximate speed of mean curvature motion, which is computed via a fully implicit variational model for time discrete mean curvature motion. The time discretization of Willmore flow is then performed in a nested fash...
متن کاملA Phase Field Based Pde Constrained Optimization Approach to Time Discrete Willmore Flow
A novel phase field model for Willmore flow is proposed based on a nested variational time discretization. Thereby, the mean curvature in the Willmore functional is replaced by an approximate speed of mean curvature motion, which is computed via a fully implicit variational model for time discrete mean curvature motion. The time discretization of Willmore flow is then performed in a nested fash...
متن کاملProcessing elastic surfaces and related gradient flows
SURFACE processing tools and techniques have a long history in the fields of computer graphics, computer aided geometric design and engineering. In this thesis we consider variational methods and geometric evolution problems for various surface processing applications including surface fairing, surface restoration and surface matching. Geometric evolution problems are often based on the gradien...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013